Does anyone know what a meme really is any more? Or, 3 misused scientific theories that will astound you

As a science communicator, I get annoyed when scientific concepts are misused. And especially if they are used wrong and overused. And double especially if they are misused, overused, and used in a way that discredits the term’s inventor.

Which brings me to memes. First of all, what a meme is not: a photo with a caption uploaded to Facebook. Seeing it used to mean any trivial fad that zooms around social media for a while — or, even worse, the actual concrete image or text that gets shared and liked 438,962 times — just makes me bang my head against my desk.

A quick recap of what memes really are: the term was coined by British geneticist and atheist Richard Dawkins in his 1976 book The Selfish Gene. It is arguable that he was just looking for a metaphor for the self-replicating nature of genes, but he hit on something that had not previously been so well expressed. He noted that “cultural entities” can be self-replicating, like genes, moving quickly through populations and having marked effects on human behaviour and culture. While some of these can seem trivial — popular songs, fashions — many are ideas or skills that take hold and change the way people do things. Furthermore, there are arguments that some of the most popular things in culture, including music and clothing, become popular because they in fact reflect or signify underlying shifts in the zeitgeist. Cultural theorists have seized on the meme concept to explore how culture changes and why — questions in anthropology and sociology. Understanding memes could help explain social movements that are positive (the Arab Spring) or negative (anti-vaccination beliefs in North America).

The misinterpretation of the meme is the latest, but hardly the worst, example of mangled scientific theories. In fact, how scientific ideas become twisted and watered down even as they become popular is probably something those meme theorists should study. I have two other examples from the history of scientific ideas to help the academics get started.

Paradigms lost

I have heard paradigm shift used to mean a radical change in one’s personal or professional life (this one from a self-improvement course) or a significant social change (from one of my public policy professors). Neither was what Thomas Kuhn meant when he coined the term in The Structure of Scientific Revolutions in 1962. Just for the record, he meant what happened when a scientific model (paradigm) shared by the scientific community had to be completely jettisoned and replaced when an anomaly was found that did not fit the model. But as soon as the idea was released, it was applied in many contexts that Kuhn clearly did not foresee. Almost any change was dubbed a “paradigm shift” just to make it sound more significant. It came to mean a “sea change” (which is not what Shakespeare meant in The Tempest either, but that’s another subject for another blog). I would use the term if a widely held model was completely upended in any field — not just science. But it does not mean an unexpected election outcome or someone’s decision to walk away from his or her job.

Origin of the Specious

After Darwin’s On the Origin of Species appeared in 1859, its concepts of “survival of the fittest” and “natural selection” were swiftly misapplied to justify mistreatment of one social group by another on the basis that it was “natural” for weak people to be crushed underfoot and for strong people to do the crushing. This was used to justify unbridled capitalism, eugenics, racism and so on — a trend later called “social Darwinism.” Never mind that Darwin was referring to a strictly biological process that often required hundreds of years of adaptation. This one is easy to see in hindsight, but ask yourself how often today we take it for granted that there are social losers and winners and that the decisions affecting people are “just business decisions.” Maybe the social Darwinism meme was more lasting than we care to admit.

Maple just one of the plants that can fight bacteria

When the story came across my desk, it sounded too sweet to be true: our iconic Canadian elixir can actually help antibiotics vanquish resistant bacteria. Researchers at McGill University in Montreal have found that some of the chemicals in maple syrup — a phenolic fraction — can help antibiotics in two ways: by breaking down biofilms that many bacteria build to protect themselves and by stopping the action of “pumps” inside bacteria that flush antibiotics out of the bacteria. The maple syrup extract also affects the genes that make bacteria infective.

But this type of ability is not that unusual in plants. I have had the pleasure of working with a researcher in Mexico, Dr. Francisco Espinosa García, as well as students in his lab, who study “chemical ecology” – the chemicals produced by plants and animals that affect their interactions. For example, one of his students had an interesting paper on how tomatoes adapt genetically to produce a chemical that repels the tomato’s most common pest. Plants have complex chemical “immune systems” that fight off pests and infections. It is no wonder that these chemicals are often antibacterial.

Back 10 years ago, the Canadian Journal of Microbiology published a very interesting article from researchers in Brazil, where a methanolic pomegranate extract has been used as a folk remedy for infections. The researchers found that the extract worked synergistically with various antibiotics against many strains of methicillin-resistant Staphylococcus aureus (MRSA), one of the most feared infections today. There were some problems with the research – the antibiotics tested were older drugs no longer available in many industrialized countries and the tests were in a lab, not in people – but the principle was there.

As I mentioned in my previous post, the answer to antibiotic resistance may not involve going to the ends of the earth, but looking at the natural processes all around us to discover ways to combat pathogens with pomegranates, tomatoes and maple syrup.